B-coloring of Cartesian Product of Trees

نویسندگان

  • R. Balakrishnan
  • S. Francis Raj
  • T. Kavaskar
چکیده

A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. The b-spectrum Sb(G) of a graph G is the set of positive integers k, χ(G) ≤ k ≤ b(G), for which G has a b-coloring using k colors. A graph G is b-continuous if Sb(G) = {χ(G), . . . , b(G)}. It is known that for any two graphs G and H , b(G H) ≥ max{b(G), b(H)}, where stands for the Cartesian product. In this paper, we determine some families of graphs G and H for which b(G H) ≥ b(G) + b(H) − 1. Further if Ti, i = 1, . . . , n are trees with b(Ti) ≥ 3, then b(T1 · · · Tn) ≥ n ∑ i=1 b(Ti)− (n− 1) and Sb(T1 · · · Tn) ⊇ {2, . . . , n ∑ i=1 b(Ti)− (n− 1)}. Also if b(Ti) = Δ(Ti) + 1 for each i, then b(T1 · · · Tn) = Δ(T1 · · · Tn) + 1, and T1 · · · Tn is b-continuous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjacent Vertex Distinguishing Acyclic Edge Coloring of the Cartesian Product of Graphs

Let G be a graph and χaa(G) denotes the minimum number of colors required for an acyclic edge coloring of G in which no two adjacent vertices are incident to edges colored with the same set of colors. We prove a general bound for χaa(G□H) for any two graphs G and H. We also determine exact value of this parameter for the Cartesian product of two paths, Cartesian product of a path and a cycle, C...

متن کامل

Colouring the Square of the Cartesian Product of Trees

We prove upper and lower bounds on the chromatic number of the square of the cartesian product of trees. The bounds are equal if each tree has even maximum degree.

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

Decomposition of cartesian products of regular graphs into isomorphic trees

We extend the ideas of Snevily and Avgustinovitch to enlarge the families of 2mregular graphs and m-regular bipartite graphs that are known to decompose into isomorphic copies of a tree T with m edges. For example, consider r1, . . . , rk with ∑k i=1 ri = m. If T has a k-edge-coloring with ri edges of color i such that every path in T uses some color once or twice, then every cartesian product ...

متن کامل

b-coloring in Square of Cartesian Product of Two Cycles

A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has at least one neighbor in each of the other color classes. The largest integer k(>0) for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. In this paper, we obtain the b-chromatic number of the square...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015